Menu

(Get Answer) – Writing A Mathematical Project Within Certain Topics 1

Question Description

For the project this semester, you will choose a physical system that can be modeled by a linear, constantcoefficient 2-by-2 system of differential equations. Your project will have the following main pieces:• Analysis of two homogeneous linear system of two first-order differential equations.• Analysis of two non-homogeneous linear system of two first-order differential equations.Application/Topic Choices• Pond or Lake Pollution• Home Heating• Drug delivery/diffusion.• Pesticide in Trees and Soil• Chemical Reactions• Competing Species• LRC Circuits1. Outline of Project Write-up(1) Introduction(2) System of ODEs(a) Give the most general form of the system of ODEs that models your application.(b) Describe the Meaning and Relevance of an Inhomogeneity (Forcing Function)(c) Homogeneous System(i) Use the two sets of values for parameters given on the Project Assignment page onmyCourses.(ii) For the first set of parameters:(A) Discuss the physical meaning of the parameters, including units, and the relativesize of the parameters.(B) Give general solution (computed by hand; computations attached as an appendix).(C) Sketch a phase portrait by making use of a computational aid that will take the system itself as input and produce a vector field and trajectories of solutions. (https://homepages.bluffton.edu/~nesterd/java/slopefields.html will work for manysystems. You can click on the plane to have trajectories plotted.)(D) Discuss which trajectories are physically possible and describe what happens to trajectories after long times. (Do they have to be in a certain quadrant?)(E) Give an interesting initial condition, which creates an IVP.• Plot the trajectory of the particular solution to this IVP using Desmos.com• Describe the particular solution of the IVP in language of the application.(iii) For the second set of parameters: Repeat steps (A)-(E) above.(d) Non-homogeneous(i) Give an example of a non-zero constant (vector-valued) forcing function and a (vectorvalued) forcing function that has at least one component that is a sinusoidal functionshifted so that it is always positive. (Include units.)(ii) Describe the physical meaning or interpretation of these forcing functions.(iii) For constant forcing(A) Write the non-homogeneous system of ODEs, using the first set of parameters foryour topic.(B) Find the general solution, using Wolframalpha or another symbolic computationalaid to find a particular solution.(C) Draw a trajectory of a particular solution using Desmos. (Just choose some valuesfor the constants.)(D) From the trajectory, determine the initial condition.(E) Describe the behavior of the particular solution of the IVP in language of the application.(iv) For the (shifted) sinusoidal forcing: Repeat steps (A)-(E) above.(e) Non-homogeneous with Discontinuous Forcing12(i) Give an example of a discontinuous (vector-valued) forcing function.(ii) Describe the physical meaning or interpretation of this forcing function.(iii) (Extra Credit: 5 pts) Perform the Laplace Transforms of the equations in your IVP withthis forcing function and the same paramters and initial condition as above. Discuss howthe solution to the IVP could be found, without doing the rest of the computations.(iv) (Extra Credit: 10 pts) Use Laplace Transforms to solve this system.(3) Appendix(a) Hand-written work for finding general solutions of homogeneous systems2. Dates• Thur. Nov 14th: The initial set up of the systems of ODEs for you application due in the homeworkassignment.• Thurs Nov 21st: Some plotting of phase portraits and trajectories for your application due in thehomework assignment.• Thurs Dec 5th: Project is due in recitation.3. Comments• A sample project, using the spring-mass system, will be posted.• All work for finding solutions should be put in a neat, hand-written appendix.• Phase plots and trajectories may be neatly hand-drawn or copied and pasted from a computerplotting tool.• Discussions should be typed, and manageable mathematical symbols should be typed. However, longor complicated mathematical expressions can be hand-written.• The responses for many parts listed in the outline should be brief. A sentence or two will sufficefor many pieces. Derivations in 2 (a) should be a short paragraph. Descriptions of the behavior ofsolutions in the language of your application should be your longest written sections, but they donot need to be longer than 4-5 sentence paragraphs.• If you use a reference (for the derivation, for instance), it should be cited.• Some examples of entries into online computational and graphing systems will be posted.

HTML tutorial

Leave a Reply

Your email address will not be published.